

SeeOff - Strategieentwicklung zum effizienten Rückbau von Offshore Windparks

(Development of strategies for sustainable offshore wind farm decommissioning)

Project duration:

November 2018 – April 2022

Projekt coordination:

City University of Applied Sciences Bremen Prof. Dr.-Ing. Silke Eckardt

Supported by:

on the basis of a decision by the German Bundestag

Website:

www.seeoff.de

09.00	Welcome and introduction
	(Prof. DrIng. Silke Eckardt, City University of Applied Sciences Bremen)
09.20	Dismantling of offshore wind farms at sea
	(Bernd Köhler, Deutsche Windtechnik)
09.40	Comminution of offshore wind farm components and recovery of materials at land
	(Dr. Sven Rausch, Nehlsen AG)
10.00	Q & A Session
10.20	Coffee Break and Networking in Lounge-Area
10.35	Economic efficiency of offshore wind farm decommissioning
	(Janina Bösche, City University of Applied Sciences Bremen)
10.50	Environmental impacts of offshore wind farm decommissioning
	(Vanessa Spielmann, City University of Applied Sciences Bremen)
11.10	Occupational safety of offshore wind farm decommissioning
	(Mandy Ebojie, City University of Applied Sciences Bremen)
11.25	Q & A Session
11.45	Lunch Break and Networking in virtual Lounge-Area
12.15	Bringing economic efficiency, environmental impacts and occupational safety together: Multi criteria decision
	making for offshore wind farm decommissioning
	(Vanessa Spielmann, City University of Applied Sciences Bremen)
12.30	Public acceptance of offshore wind farm decommissioning
	(Philipp Tremer, German Offshore Wind Energy Foundation)
12.45	Q & A Session
13.05	Goodbyg and subsequent Networking in Lounge Area
	Glosing of conference platforms
13.45	Closing of conference platform

Multi criteria decision making

Multi criteria decision analysis (MCDA) is a tool that supports decision making considering multiple objectives

Procedure:

- 1. Determination and weighting of decision criteria
- 2. Assessment of decommissioning scenarios
- 3. Calculation and interpretation of decision scores

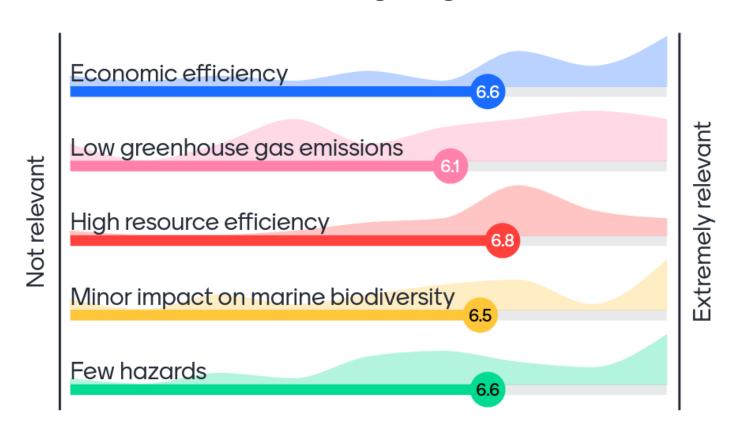
Multi criteria decision making Determination of decision criteria

Sustainable decommissioning of offshore wind farms					
Category	Economy	Environment		Health and safety	
Aspect	Economic efficiency	GHG- Emission	Biodiversity	Resource efficiency	Safety at work
Objective	Economic efficient	Low GHG- Emission	Minor local impact	High resource efficiency	Few hazards
Attribute	(Present) value of costs/ decommis- sioned MW	CO ₂ - Equivalent	Fraction of species richness maintained	Recovery rate	Hazard measure

Multi criteria decision making Weighting of decision criteria

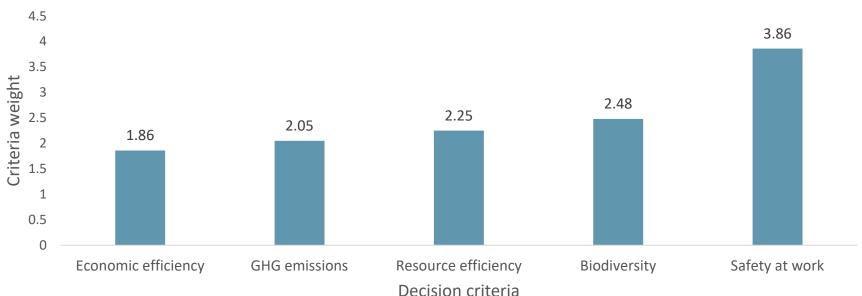
Live Criteria Weighting

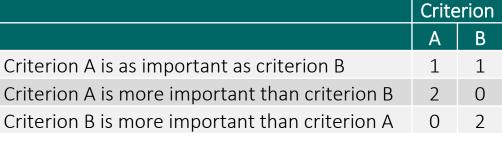
Please rate the criteria regarding their relevance for offshore wind farm decommissioning on a scale of 1 (not relevant) to 9 (extremely relevant)


Please use Mentimeter-link in chat

Multi criteria decision making Weighting of decision criteria

Live Criteria Weighting - Results




Multi criteria decision making

Weighting of decision criteria

.	• •	1	•
Pric	ority	anai	VSIS
	9	alla	, , 5.5

- One-week online survey
- Pairwise comparison of decision criteria

Multi criteria decision making Assessment of decommissioning scenarios

Points for the fulfilment of the decision criterion

On a scale

0 = criterion not fulfilled

. . .

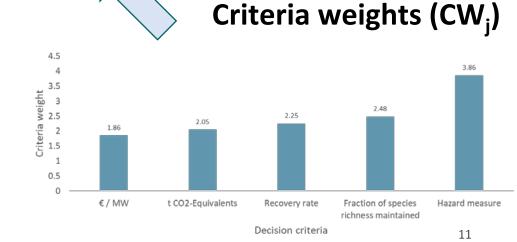
10 = criterion fulfilment is excellent

The other points were distributed proportionally

Points	Criteria fulfilment	t CO ₂ -Eq	uivalents
0	not fulfilled	>	52,903
1	just sufficient	52,902	51,530
2	sufficient	51,529	50,158
3	sufficient - satisfactory	50,157	48,786
4	satisfactory	48,785	47,414
5	satisfactory - good	47,413	46,043
6	good	46,042	44,671
7	good - very good	44,670	43,299
8	very good	43,298	41,927
9	very good - excellent	41,926	40,555
10	excellent	<	40,556

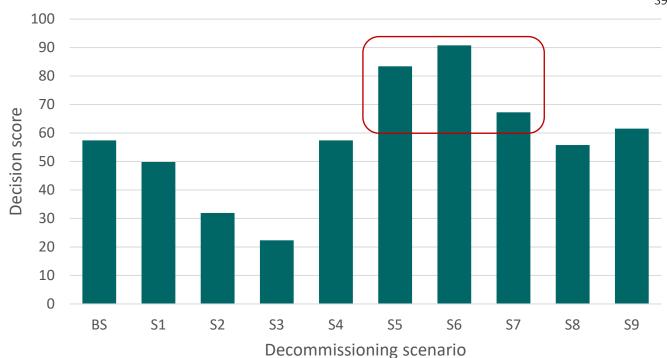
Multi criteria decision making Calculation of decision scores

Calculate decision scores (DS_i)

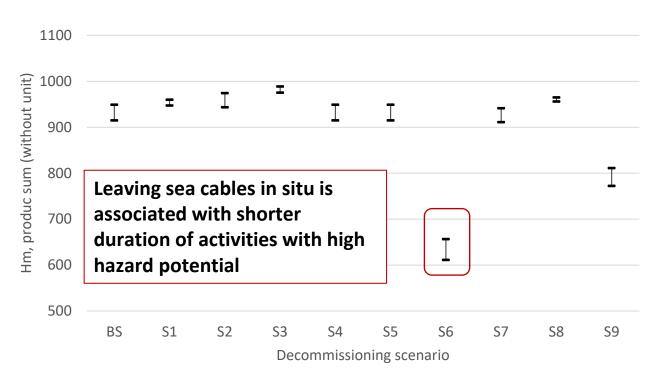

Weighted sum model

Points	Criteria fulfilment	t CO₂-Eq	uivalents
0	not fulfilled	>	52,903
1	just sufficient	52,902	51,530
2	sufficient	51,529	50,158
3	sufficient - satisfactory	50,157	48,786
4	satisfactory	48,785	47,414
5	satisfactory - good	47,413	46,043
6	good	46,042	44,671
7	good - very good	44,670	43,299
8	very good	43,298	41,927
9	very good - excellent	41,926	40,555
10	excellent	<	40,556

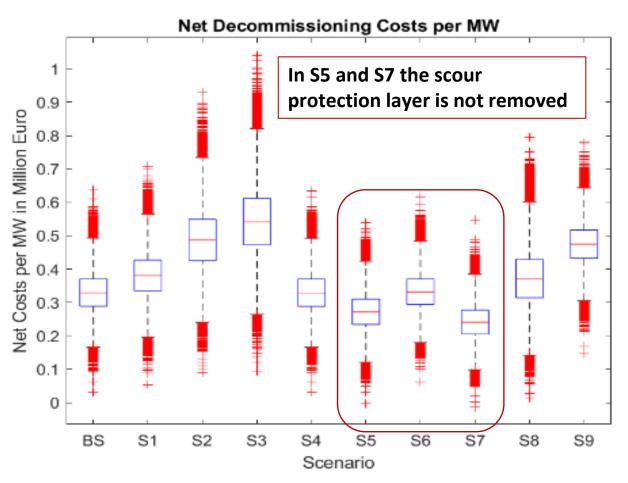
n	l
$DS_i = \sum_{i=1}^{n}$	$\int_{1}^{\infty} CF_{ij} * CW_{j}$
J=	1



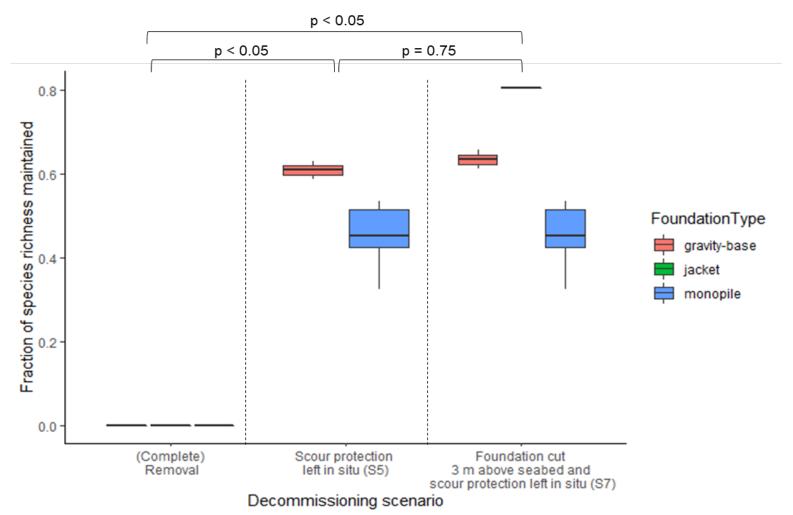
Points for the fulfilment of the decision criterion (CF_{ii})



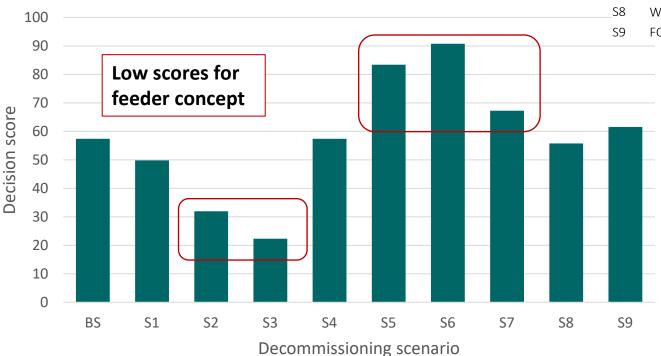
High scores for partial decommissioning scenarios


- BS Baseline scenario
- S1 Feeder concept WTG
- S2 Feeder concept WTG-FOU
- S3 Feeder concept WTG and WTG-FOU
- S4 Load-off OSS with SPMT
- S5 SPL left in situ
- S6 Sea cables left in situ
- S7 WTG-FOU: cut above seabed
- S8 WTG-FOU: complete removal
- S9 FOU: cut with diamond wire machine

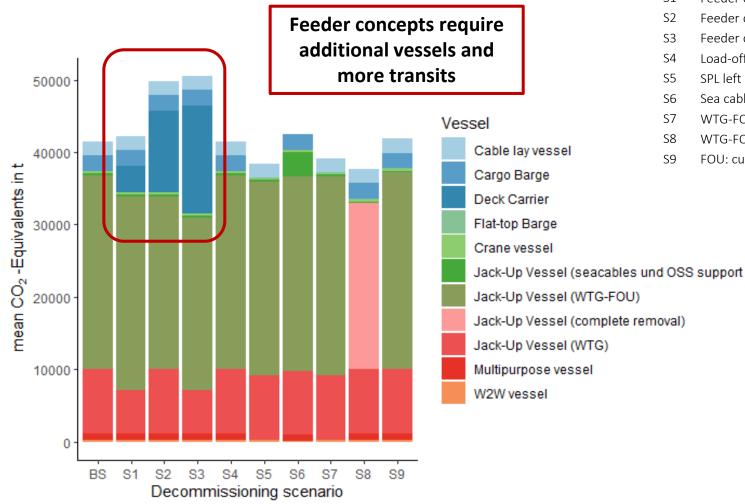
- BS Baseline scenario
- S1 Feeder concept WTG
- S2 Feeder concept WTG-FOU
- S3 Feeder concept WTG and WTG-FOU
- S4 Load-off OSS with SPMT
- S5 SPL left in situ
- S6 Sea cables left in situ
- S7 WTG-FOU: cut above seabed
- S8 WTG-FOU: complete removal
- S9 FOU: cut with diamond wire machine



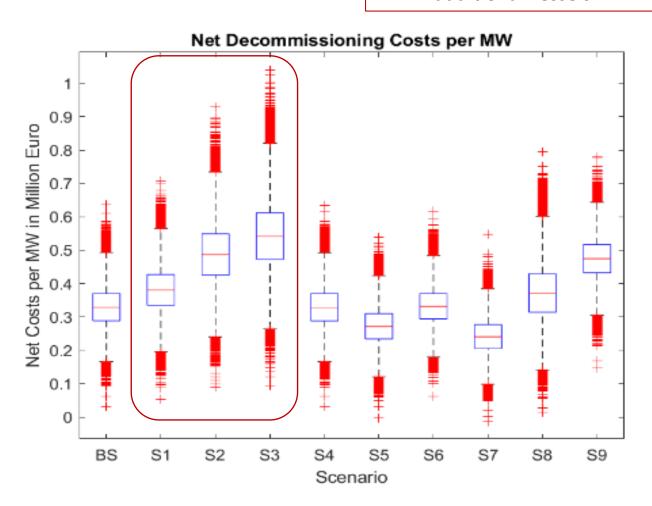
- BS Baseline scenario
- S1 Feeder concept WTG
- S2 Feeder concept WTG-FOU
- S3 Feeder concept WTG and WTG-FOU
- S4 Load-off OSS with SPMT
- S5 SPL left in situ
- S6 Sea cables left in situ
- S7 WTG-FOU: cut above seabed
- S8 WTG-FOU: complete removal
- S9 FOU: cut with diamond wire machine



Environmental impacts Biodiversity


High scores for partial decommissioning scenarios

- BS Baseline scenario
- S1 Feeder concept WTG
- S2 Feeder concept WTG-FOU
- S3 Feeder concept WTG and WTG-FOU
- S4 Load-off OSS with SPMT
- S5 SPL left in situ
- S6 Sea cables left in situ
- S7 WTG-FOU: cut above seabed
- S8 WTG-FOU: complete removal
 - FOU: cut with diamond wire machine


Environmental impacts GHG Emissions

- Baseline scenario
- Feeder concept WTG S1
- Feeder concept WTG-FOU S2
- S3 Feeder concept WTG and WTG-FOU
- Load-off OSS with SPMT S4
- S5 SPI left in situ
- S6 Sea cables left in situ
- S7 WTG-FOU: cut above seabed
- S8 WTG-FOU: complete removal
- FOU: cut with diamond wire machine

Feeder concepts require additional vessels

Multi criteria decision making Conclusion

High decision scores for decommissioning scenarios with partial decommissioning

Low decision scores for decommissioning scenarios with feeder concepts

- → Partial decommissioning scenarios, particularly leaving scour protection in situ should be taken into consideration
- → Innovative dismantling and logistic concepts that forego or reduce the utilisation of expensive vessels with high GHG emissions should be investigated

Thank you for your attention!

Vanessa Spielmann
Hochschule Bremen
Neustadtswall 30
28199 Bremen
+49 176 1514 0223
vanessa.spielmann@hs-bremen.de

